578 research outputs found

    Tuning transcriptional regulation through signaling: A predictive theory of allosteric induction

    Full text link
    Allosteric regulation is found across all domains of life, yet we still lack simple, predictive theories that directly link the experimentally tunable parameters of a system to its input-output response. To that end, we present a general theory of allosteric transcriptional regulation using the Monod-Wyman-Changeux model. We rigorously test this model using the ubiquitous simple repression motif in bacteria by first predicting the behavior of strains that span a large range of repressor copy numbers and DNA binding strengths and then constructing and measuring their response. Our model not only accurately captures the induction profiles of these strains but also enables us to derive analytic expressions for key properties such as the dynamic range and [EC50][EC_{50}]. Finally, we derive an expression for the free energy of allosteric repressors which enables us to collapse our experimental data onto a single master curve that captures the diverse phenomenology of the induction profiles.Comment: Substantial revisions for resubmission (3 new figures, significantly elaborated discussion); added Professor Mitchell Lewis as another author for his continuing contributions to the projec

    The Energetics of Molecular Adaptation in Transcriptional Regulation

    Get PDF
    Mutation is a critical mechanism by which evolution explores the functional landscape of proteins. Despite our ability to experimentally inflict mutations at will, it remains difficult to link sequence-level perturbations to systems-level responses. Here, we present a framework centered on measuring changes in the free energy of the system to link individual mutations in an allosteric transcriptional repressor to the parameters which govern its response. We find the energetic effects of the mutations can be categorized into several classes which have characteristic curves as a function of the inducer concentration. We experimentally test these diagnostic predictions using the well-characterized LacI repressor of Escherichia coli, probing several mutations in the DNA binding and inducer binding domains. We find that the change in gene expression due to a point mutation can be captured by modifying only a subset of the model parameters that describe the respective domain of the wild-type protein. These parameters appear to be insulated, with mutations in the DNA binding domain altering only the DNA affinity and those in the inducer binding domain altering only the allosteric parameters. Changing these subsets of parameters tunes the free energy of the system in a way that is concordant with theoretical expectations. Finally, we show that the induction profiles and resulting free energies associated with pairwise double mutants can be predicted with quantitative accuracy given knowledge of the single mutants, providing an avenue for identifying and quantifying epistatic interactions.Comment: 11 pages, 6 figures, supplemental info. available via http://rpgroup.caltech.edu/mwc_mutant

    The Twinning Problem

    Get PDF
    In the field of crystallography, some crystals are not made of a single component but are instead twinned.In these cases, the observed intensities at some points in the lattice will be far larger than predictions. If we find the rotation associated to the twinned component, we can model this twin and improve our agreement with observations. In this report, we explore many routes to improve the process of identifying twins: Generation of fake data for better understanding and accurate testing. The representation of a rotation as defined by an axis and angle. The representation of a rotation as a quaternion. Using lattice points which must be equidistant from the origin to create our viable rotations. An algorithm focused on restricted possibilities. An exploration of 2D lattices for which twinning is mathematically impossible. We find that there is much to be investigated in the field of twinning

    Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems

    Get PDF
    A crucial step towards engineering biological systems is the ability to precisely tune the genetic response to environmental stimuli. In the case of Escherichia coli inducible promoters, our incomplete understanding of the relationship between sequence composition and gene expression hinders our ability to predictably control transcriptional responses. Here, we profile the expression dynamics of 8269 rationally designed, IPTG-inducible promoters that collectively explore the individual and combinatorial effects of RNA polymerase and LacI repressor binding site strengths. We then fit a statistical mechanics model to measured expression that accurately models gene expression and reveals properties of theoretically optimal inducible promoters. Furthermore, we characterize three alternative promoter architectures and show that repositioning binding sites within promoters influences the types of combinatorial effects observed between promoter elements. In total, this approach enables us to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics

    Metrology part 1:definition of quality criteria

    Get PDF
    Any measurement is always afflicted with some degree of uncertainty. A correct understanding of the different types of uncertainty, their naming, and their definition is of crucial importance for an appropriate use of measuring instruments. However, in perioperative and intensive care medicine, the metrological requirements for measuring instruments are poorly defined and often used spuriously. The correct use of metrological terms is also of crucial importance in validation studies. The European Union published a new directive on medical devices, mentioning that in the case of devices with a measuring function, the notified body is involved in all aspects relating to the conformity of the device with the metrological requirements. It is therefore the task of the scientific societies to establish the standards in their area of expertise. Adopting the same understandings and definitions among clinicians and scientists is obviously the first step. In this metrologic review (part 1), we list and explain the most important terms defined by the International Bureau of Weights and Measures regarding quantities and units, properties of measurements, devices for measurement, properties of measuring devices, and measurement standards, with specific examples from perioperative and intensive care medicine

    Metrology part 2:Procedures for the validation of major measurement quality criteria and measuring instrument properties

    Get PDF
    A measurement is always afflicted with some degree of uncertainty. A correct understanding of the different types of uncertainty, their naming, and their definition is of crucial importance for an appropriate use of the measuring instruments. However, in perioperative and intensive care medicine, the metrological requirements for measuring instruments are poorly defined and often used spuriously. The correct use of metrological terms is also of crucial importance in validation studies. The European Union published a new directive on medical devices, mentioning that in the case of devices with a measuring function, the notified body is involved in all aspects relating to the conformity of the device with the metrological requirements. It is therefore the task of scientific societies to establish the standards in their area of expertise. After adopting the same understandings and definitions (part 1), the different procedures for the validation of major quality criteria of measuring devices must be consensually established. In this metrologic review (part 2), we review the terms and definitions of validation, some basic processes leading to the display of an indication from a physiologic signal, and procedures for the validation of measuring instrument properties, with specific focus on perioperative and intensive care medicine including appropriate examples

    Time preferences and risk aversion: tests on domain differences

    No full text
    The design and evaluation of environmental policy requires the incorporation of time and risk elements as many environmental outcomes extend over long time periods and involve a large degree of uncertainty. Understanding how individuals discount and evaluate risks with respect to environmental outcomes is a prime component in designing effective environmental policy to address issues of environmental sustainability, such as climate change. Our objective in this study is to investigate whether subjects' time preferences and risk aversion across the monetary domain and the environmental domain differ. Crucially, our experimental design is incentivized: in the monetary domain, time preferences and risk aversion are elicited with real monetary payoffs, whereas in the environmental domain, we elicit time preferences and risk aversion using real (bee-friendly) plants. We find that subjects' time preferences are not significantly different across the monetary and environmental domains. In contrast, subjects' risk aversion is significantly different across the two domains. More specifically, subjects (men and women) exhibit a higher degree of risk aversion in the environmental domain relative to the monetary domain. Finally, we corroborate earlier results, which document that women are more risk averse than men in the monetary domain. We show this finding to, also, hold in the environmental domain
    • …
    corecore